
Object Tracking in Random Access Sensor

Networks: Extended Kalman Filtering With State

Overlapping

Mohammadreza Alimadadi

ECE Dept.

Northeastern University

Boston, USA

alimadadi@coe.neu.edu

Milica Stojanovic

ECE Dept.

Northeastern University

Boston, USA

millitsa@ece.neu.edu

Pau Closas

ECE Dept.

Northeastern University

Boston, USA

pau.closas@northeastern.edu

Abstract—In this paper, we address the problem of object
tracking using sensor networks where the sensor nodes measure
the strength of the field generated by a number of objects, and
transmit their measurements to a fusion center in a random
access manner for final reconstruction of the trajectories. Our
focus is on underwater systems that use acoustic communication.
Extended Kalman filtering is employed for detection and tracking
of the objects inside the observation area. We propose a method
for object tracking called state overlapping, which is based on
exchanging and overwriting the estimated state vector between
a number of independent Kalman filters. The method improves
the scalability of the system, relieves the requirement for a time-
varying state vector, and reduces the probability of divergence.
Moreover, we propose an adaptive rate control scheme and refine
an existing one to improve the estimation accuracy and the energy
efficiency of the system. The performance of these methods is
evaluated through simulation, showing the effectiveness of the
approaches proposed.

Index Terms—Kalman filter, object tracking, wireless sensor
network, adaptive rate control, random access.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) with their wide range of

potential applications have attracted increased research interest

over the last few decades [1]. Recently, underwater WSNs

have drawn research attention with increased human activities

in the ocean. These networks rely on acoustic transmission for

spanning longer ranges, and are consequently constrained by

limited bandwidth, long propagation delays and pronounced

Doppler effects [2], [3]. Random access relieves synchroniza-

tion issues in such conditions, but introduces the risk of data

packet collision at the fusion center (FC) of a network. To

manage the scarce bandwidth and power resources, efficient

control schemes are often necessary in acoustic WSNs [4].

One of the important applications of WSNs is object track-

ing, which has been studied extensively for several decades

and numerous tracking algorithms have been proposed [5], [6].

This work was supported by one or more of the following grants: ONR
N00014-15-1-2550, NSF CNS-1726512, CNS-1815349 and ECCS-1845833.

However, it still remains a very challenging problem. In [7],

a decentralized, dynamic clustering algorithm was introduced

for acoustic object tracking. The authors in [8] considered

the joint problem of packet scheduling and self-localization in

underwater acoustic sensor networks and proposed a Gauss-

Newton based localization algorithm for these schemes. In

order to manage the resource scarcity of underwater WSNs, [9]

introduced an adaptive object tracking approach where sensor

nodes transmit to FC using random access in a centralized

topology.

Kalman filter is by far the most popular method for object

tracking. In [10], the authors considered the case where the

packets may be lost due to collisions and communication

noise, which is known in literature as Kalman filtering with

intermittent observations. The authors in [11] studied the

stability of standard Kalman filtering with intermittent obser-

vations. They showed the existence of a critical arrival rate

below which the estimation error may diverge.

The tracking methods designated in the aforementioned

references are derived based on the assumption that the number

of objects in the area is known a-priori, so that one can

easily define the state variables and employ Kalman filtering

for location estimation. This is not a realistic assumption in

localization and tracking applications where nodes can freely

enter or depart the area at any time.

In this paper, we address the problem of object tracking

in underwater acoustic WSN. We consider the case where the

objects can freely enter or depart the area. In standard Kalman

filtering this would require changing the state vector each time

an object departs or enters the area. By employing a technique

called state overlapping we relax this requirement. Similarly

to [12], we assume that the sensor nodes access the channel

in a random manner. As a result, the packets may be lost due

to collisions or communication noise. Moreover, we introduce

new adaptive rate control schemes to instruct the sensor nodes

to adjust their transmission rate efficiently to enhance the

accuracy of estimation. Simulation results show the benefits
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of the proposed method and the rate control schemes.

The rest of the paper is organized as follows. Sec. II presents

the system model. Sec. III introduces the state overlapping

method for object discovery in random access networks.

Sec. IV presents the proposed adaptive rate control schemes.

Simulation results are presented in Sec. V. Finally, we provide

concluding remarks in Sec. VI.

II. SYSTEM MODEL

We consider a two-dimensional observation area in which N
sensors are placed at predefined locations. Each sensor knows

its own location [a (n) , b (n)]
T
, n = 1, ..., N . Objects are

moving in the area, and the location of the m-th object at

collection interval k are denoted by [xk (m) , yk (m)]
T

. The

duration of one collection interval, T , is short enough that the

objects’ locations can be considered fixed. Each object emits

a signal of certain amplitude. The signal decays with distance

d based on a signature function f(d).
At time k sensor n senses the field generated by the objects.

The received signal is a combination of all the objects’ signals,

vk(n) =
∑

m

f(dk(m,n)) + wk(n) (1)

where dk (m,n) =

√

(xk(m)− a(n))
2
+ (yk(m)− b(n))

2
is

the distance between the m-th object and the n-th sensor at

time k, f(d) models the propagation loss, and wk(n) is the

sensing noise, modeled as zero-mean Gaussian of variance σ2
w.

After sensing the field, each node encodes its measurement

vk(n) into a digital data packet and transmits the packet to

the FC. The transmissions happen at random instants in time,

which we model here as a Poisson process with rate λn per

sensor. The Poisson model was used as a general case, but

other modes can be used as well.

The FC collects all the packets transmitted in one interval of

duration T . Some packets will be dropped because of collision

and noise. The FC may also receive multiple packets from

one sensor. After discarding all the erroneous and redundant

packets, the FC is left with useful packets, which arrive at an

aggregate rate λFC . During each collection interval, the FC

receives a random number of data packets. We define Rk as

the set of nodes whose packets are received successfully during

the k-th collection interval. These intermittent observations

are used as an input to the tracking algorithm to estimate the

location of the objects.

A. Modified Lossy Extended Kalman Filter

The modified lossy extended Kalman filter (MLEKF) was

proposed in [10] as a method to incorporate intermittent

observations into the extended Kalman filter. Since this method

is the underlying approach for our rate-adaptation methods, we

briefly discuss it here.

Suppose that the state of the system at time k is defined as

xk = [xk(1),xk(2), . . . ,xk(Mmax)]
T (2)

where Mmax is the maximum number of objects inside the

observation area and xk(m) = [xk(m), yk(m), ẋk(m), ẏk(m)]

contains the location and velocity of object m. The state vector

evolves as

xk = Axk−1 +qk (3)

where A is the state transition matrix, and qk is the pro-

cess noise, which is modeled as zero-mean Gaussian with

covariance matrix Q. Considering AR-1 model with one-step

correlation ρ and only one object moving in the area, A and

Q matrices become

A =









1 0 T 0
0 1 0 T
0 0 ρ 0
0 0 0 ρ









, Q =









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1









. σ2
v(1−ρ2)

where T is the time interval between successive observations

and σ2
v controls the variance of the process noise. The methods

proposed in this paper are not limited to the AR-1 model, and

can be applied to other models as well.

Some of the packets will be dropped due to collisions and

communication noise, yielding the actual received observa-

tions ṽk = Gkvk where the matrix Gk is obtained from an

N × N identity matrix by removing the rows corresponding

to non-contributing sensors, i.e. those sensors that do not

belong to Rk. The matrix Gk is thus random, and it models

the intermittent observations and lossy communications. The

signal presented to the FC in the k-th collection interval is

thus given by

ṽk = Gkvk = Gk[f(xk) +wk] = f̃k(xk) + w̃k (4)

where f(·) is the nonlinear measurement function defined by

(1) and wk is the sensing noise with covariance W = σ2
wI.

Algorithm 1 shows the different steps involved in MLEKF,

where

F(x̂) =
∂f(x)

∂x
|x=x̂ (5)

is the Jacobian matrix.

III. OBJECT TRACKING USING STATE OVERLAPPING

In conventional Kalman filtering it is assumed that the

number of objects in the area, and hence the number of states,

is known a-priori. Needless to say that such an assumption is

not realistic in many practical situations where the objects can

freely enter or depart the area at any time. A modification is

thus required to address the entrance-departure identification

issue. In addition to providing flexibility, such a modification

also yields a scalable algorithm that can be applied to large

coverage areas without undue increase in complexity.

In this paper, we introduce a method for addressing a

variable number of objects in a system. The method is called

state overlapping, and is based on exchanging and overwriting

the estimated state vector between a number of independent

Kalman filters.

Suppose that we are interested in finding the location and

velocities of objects inside a specific area called the primary

zone as illustrated in Fig. 1. To do so, we consider a larger area

called the observation area in which the primary zone resides.
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Algorithm 1 MLEKF Algorithm

Input: x̂0, P0,A,Q,Gk,W
Output: x̂k

1: Find the predicted mean x̂−

k and predicted covariance P
−

k

x̂−

k = A x̂k−1

P
−

k
= APk−1A

T +Q

2: Form

F̃k = GkF(x̂
−

k )

3: Find measurement prediction covariance

Sk = F̃kP
−

k
F̃T

k +GkWGT

k

4: Find filter gain matrix

Kk = P
−

k
F̃T

kS
−1

k

5: Update x̂k

x̂k = x̂−

k +Kk(ṽk − f̃k(x̂
−

k ))

6: Update Pk

Pk = P
−

k
−KkF̃kP

−

k

The observation area is divided to Nz zones out of which one

is the primary zone and the rest are secondary zones.

Objects can freely enter or depart the primary zone at any

time. Corresponding to each of the zones there is one Kalman

filter running at the FC. At each time instant the FC thus

runs Nz Kalman filters in parallel. All Kalman filters work at

state vector dimension Mmax, corresponding to the maximum

number of objects that can be present in the observation area.

This number can be established from historical data and the

expected density of objects.

At the end of each updating interval the estimated locations

of objects are checked. If the estimated location of one object

resides inside the i-th zone, the corresponding state in all other

Kalman filters will be overwritten by the estimated value of

the i-th filter. Such an approach is justified by the fact that

whenever an object is inside the i-th zone, the value obtained

by the i-th Kalman filter is expected to be more reliable than

the ones obtained by other filters. Consequently, we simply

discard the less reliable values and continue with the more

reliable one. In cases where more than one zone claims a

specific object, we simply choose one of the zones randomly.

Later, we will see that by employing this simple method we

not only solve the entrance-departure issue, but also reduce

the probability of divergence. In practice, we only need to

update the Kalman filter for the zones in which an object

is found at time k. Hence, at each point in time, we update

at most min[Nz,Mmax] filters. Moreover, since each of the

filters is running only on the measurements received from the

sensors within one zone ( N
Nz

at most), the complexity will be

proportionately reduced. This is an appealing feature of the

state overlapping method.

   

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x [km]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y
 [

k
m

]

Primary zone 

Observation area 

Secondary zones 

 

Fusion Center (FC) 

Sensor Node 

Object trajectory 

Fig. 1. The observation area, primary and secondary zones.

Using Nz local filters instead of a single filter also helps

to reduce the probability of divergence. Namely, when a

single filter diverges, there is no mechanism for recovery.

In contrast, when we have more than one filter, each will

converge or diverge independently from the others. If one

filter starts to diverge, the values from the other filters may

help to stop divergence by overwriting. Also, since each filter

only estimates the location of close objects, the probability

of divergence is lower. Together, these facts help to improve

the divergence rate. Hence, in addition to solving the entrance

departure issue, state overlapping promotes convergence and

helps with the general reduction in computational complexity.

These benefits come at a slight sacrifice in performance, as

measured by the mean squared error of location estimates.

State overlapping is scalable to any larger area. If a larger

area needs to be covered, the process of assigning the primary

and secondary zones will be repeated across that area. Track-

ing in a different primary zone remains the same in principle,

i.e. it employs state overlapping between the new local primary

area and its secondary areas. The Kalman filters still operate

at the same state dimension Mmax, which corresponds to the

maximum number of objects expected in one observation area,

not the total area covered. Thus, the algorithm retains the same

computational complexity, while the total coverage area can

grow without bounds.

IV. RATE CONTROL

As we mentioned earlier, nodes transmit packets based on

a Poisson process with rate λn , which can be different for

each node n = 1, . . . , N . The FC collects the measurements

during an observation window T . Fig. 2 shows the diagram

of the system. Following the treatment of [12], the rate of

useful packets at the FC is modeled as a Poisson process with

aggregate arrival rate

λFC =

∑N

n=1 (1− e−psλnT )

T
(6)

where ps = (1 − pe)e
−2

∑N
n=1 λnTp is the probability of suc-

cessful reception of the packet at the FC, pe is the probability

of a packet being lost to communication noise, and Tp is packet

duration.
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Fig. 2. Overview of the system. The observations are transmitted over an
unreliable communication channel and can be lost.

Here, we consider three rate schemes. The first one is a

fixed rate scheme. In this case, all sensors transmit at a fixed

rate λn = λf for all n = 1, ..., N . The aggregate rate (6) thus

becomes

λFC =
N

T
(1− e−psλfT ) (7)

where ps = (1 − pe)e
−2NλfTp . Assuming Lp as the length

of each packet in bits and Sf as the spectral efficiency of the

transmission method in bits/s/Hz, we can relate the value of

Tp to bandwidth by

BW =
Lp

SfTp

(8)

To find the optimal number of sensors to use within a given

bandwidth, we take the derivative of λFC with respect to λf ,

set it equal to zero, and identify the optimum value as

λf,opt =
1

2NTp

(9)

Using this value in (7), we find the corresponding aggregate

rate of useful packets at the FC as

λmax =
N

T
(1− e

−
(1−pe)T
2NTpe ) (10)

This is the maximum achievable rate at which the FC can re-

ceive useful packets from sensor nodes. Note that as N → ∞,

the rate saturates at

λlim = lim
N→+∞

λmax =
(1− pe)

2Tpe
(11)

The fixed rate scheme is a simple, but inefficient approach

for random access sensor networks. As the packets from

different sensors are not of the same importance, an adaptive

rate control scheme can improve the tracking accuracy and

the energy efficiency of the system. Here, we first upgrade an

existing rate control scheme, then we propose a new one.

In [9] an adaptive rate control scheme was proposed for the

special case of an exponentially decaying signature function.

Assuming that dn is the distance from sensor n to the closest

object it sees, the transmission rate of the n-th sensor is

λn = λee
−

d2n
2σ2

e (12)

where λe and σe are model parameters. At time k = 0 each

node transmits at rate λf,opt =
1

2NTp
. No specific method is

proposed to set the values of λe and σe in [9]. As we will see

in Sec. V, it is very important to determine appropriate values

for these parameters as the method may otherwise fail.

In general, the optimal values of λe and σe depend on

N,T, Tp, the number of objects, etc. The value of σe should be

determined based on the dimension of the area. For example,

if we want to give more priorities to sensors which are located

in a circle of radius R of each object, then we should choose

σe = R. For the special case of exponential signature function

f(d) = e−αd, an appropriate choice for σe is 1/α. This choice

gives priorities to the nodes located in the 1/α neighborhood

of each object. In this neighborhood the received signal power

is at least e−1 ≈ %36 of the transmitted signal.

In order to find an appropriate value for λe, we recall from

the fixed rate scheme that if all sensors transmit at a fixed

rate of λf,opt =
1

2NTp
the received rate at FC is maximized.

Therefore, an appropriate choice for λe would be

λe =
1

2NTp

(13)

The exponential rate adjustment scheme thus becomes

λn =
1

2NTp

e−α2d2
n (14)

In this way, a node that is very close to an object is given 64%
more transmission opportunities compared to a node which is

located at distance 1/α.

Now, we introduce a more general and more efficient

adaptive rate control scheme which is based on the intuition

that the sensors which receive a more powerful signal in a

given collection interval should have higher transmission rate

in that interval. The proposed method is called relative power

rate control and provides better accuracy of tracking. Based

on this method, at time k the n-th sensor transmits at rate

λn = λr

vk(n)
∑N

i=1 vk(i)
(15)

where λr is a fixed value, and vk(n) is the received signal at

n-th sensor at time k, as defined in (1).

Intuitively, the sum of rates should be equal for an adaptive

and a fixed rate scheme, i.e.

N
∑

n=1

λn = N ×
1

2NTp

=
1

2Tp

(16)

According to (15) we have
∑N

n=1 λn = λr which implies that

λr = 1
2Tp

. Substituting into (15) we find the rate adaptation

scheme to be

λn =
vk(n)

2Tp

∑N

i=1 vk(i)
(17)

In the next section we will see how various rate schemes

perform compared to each other in terms of different metrics.

Although, we introduced three rate schemes in this paper,

any method for deciding the per sensor transmission rate is
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TABLE I
LIST OF THE PARAMETERS USED IN SIMULATION

Parameter Description Default value

L length and width of the observation area 1 km

Nz Total number of zones 9
N # of sensors inside the observation area 36

Mmax Maximum number of objects 10
fr frequency of acoustic signal 10 kHz

k spreading factor 1.5
SNR signal to noise ratio (sensing) 10 dB

T collection interval 1 s

Tp packet duration 10 ms

ρ AR-1 correlation factor 0.999

pe packet error rate 0.1

potentially a rate scheme and other factors such as time of

arrival or time difference of arrival can be used instead of the

received power.

V. SIMULATION RESULTS

We consider an observation area of size 1 km by 1 km which

is divided to Nz squared zones. N sensors are distributed

uniformly inside the observation area. Each object generates

an acoustic signal of power Pt. The acoustic path loss model

we used is

A(d, fr) = (d/dref )
ka(fr)

(d−dref ) (18)

where

10 log a(fr) = 0.11(
f2
r

1 + f2
r

) + 44(
f2
r

4100 + f2
r

)

+2.75× 10−4f2
r + 0.003

(19)

is the absorption loss as a function of reference frequency fr
in kHz, k is the spreading factor and dref is the reference

distance. Table I lists salient system parameters and their

default values. The velocities of the objects change with time

based on the AR-1 model with an average absolute value on

the order of a few meters per second. The sensing SNR is

defined as SNR = Pt/σ
2
w, where σ2

w is the variance of the

sensing noise. (Note that the sensing SNR is defined with

respect to transmit power, as the power received at each sensor

may be different.) First, we consider the performance of state

overlapping method in a perfect communication case. Fig. 3

shows the percentage of the times in which entrance/departure

of objects is successfully detected. For example, assume that

at time k = k0 an object enters/departs the primary zone. A

detection is called successful if the algorithm can detect the

entrance/departure of the object at most at time k = k0+klag ,

where klag is a constant number of iterations. Fig. 3 quantifies

the increase in successful detection rate with SNR and the

number of sensors.

Fig. 4 shows the minimum rate of successful transmissions

per collection interval required to ensure the MSE of -20 dB

or less in the perfect communication scenario. We call this

rate λ20dB . For example, for Mmax = 5 objects and SNR =
15 dB, we need at least 28 measurements in each collection

interval. Using (11) we can find an upper bound on the range
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Fig. 3. Successful detection rate vs. SNR for different number of sen-
sors N and Nz = 9. Three objects are moving in the area. ρ = 0.999,
σv = 10 m/s, T = 1 s, klag = 10.
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of Tp values for which the fixed rate scheme can lead to this

MSE:

Tp ≤
(1− pe)

2eλ20dB
= Tp,20dB (20)

For example, for λ20dB = 28, the maximum acceptable value

is Tp,20dB = 5.9 ms. In practical situations, the number of

nodes is limited. Using Eqs. (8) and (10) we can find (N,BW )
pairs for which the MSE = −20 dB is guaranteed. Fig. 5

shows such curves for Lp = 32 bits, Sf = 1 bit/s/Hz and a

varying number of objects. As a rule of thumb, one can choose

a pair in the knee part of the curves. Increasing the bandwidth

beyond this point does not lead to a significant reduction in the

number of sensors. For example, for Mmax = 5 a reasonable

choice would be BW = 10 kHz, and N = 36.

Now, we evaluate the performance of the rate control

schemes. Fig. 6 shows the MSE vs. sensing SNR for different

rate control methods. This result shows that the relative

power method and the exponential rate method perform nearly

identically and both outperform the fixed rate method.

Fig. 7 shows the performance of different rate control

methods as a function of N . Here, we also included the result

from another method that we call semi-adaptive exponential

scheme, in which σe = 1/α as before, but λe = 0.6 is fixed
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pe = 0.1, σe = 0.5 km.

rather than changing with N as outlined in Eq. (13). The value

of λe = 0.6 is the optimum value for N = 81. That is why the

two exponential schemes perform the same at N = 81. Other

than this, the adaptive exponential scheme always outperforms

the semi-adaptive one. At the same time, the other methods

are self-adaptive and their performance becomes better with

increasing N .

VI. CONCLUSION

In this paper we proposed a new method for object discovery

and tracking in sensor networks where sensor nodes transmit

to the FC in a random access manner. The proposed state

overlapping method relieves the need for time-varying size of

the state vector in Kalman filtering. This makes the algorithm

more scalable and easily applicable to any observation area.

A group of Kalman filters is employed at the FC, each filter

making use of one set of sensing values observed by the

nodes. In this way, each Kalman filter benefits from the more

reliable sensory values at each point in time. We also analyzed

different control schemes for adjusting the transmission rate

from sensor nodes to the FC. These schemes have model

parameters that need to be adjusted carefully, and we proposed

methods to set appropriate values for these parameters. By
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N
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Fig. 7. MSE vs. N for different rate control methods. Five objects are moving
in the area. Sensing SNR = 15 dB, ρ = 0.999, σv = 10 m/s, T = 1 s,
Tp = 10 ms, pe = 0.1, σe = 0.5 km.

adjusting the transmission rate adaptively, we make better use

of the available bandwidth and improve the tracking capability

and the energy efficiency of the system. Although we used

acoustic path loss model for simulation, the method is not

limited to this case and can be applied to other signature

functions including radio communications. Future research

should focus on finding additional rate adjustment policies,

taking into account factors such as the speed of objects, as

well as mobile systems, where the sensors’ locations can be

controlled.
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